
Chomik

chomik version 0.0.5
document version 0.1

Pawel Biernacki

pawel.f.biernacki@gmail.com

Vantaa October 9, 2022

2

Chapter 1

Chomik - a minimalistic
programming language

1.1 Introduction

In this section we will discuss the difference between the Chomik language and the C/C++
languages. You have got used to the stack, loops, conditional instructions, data structures,
classes, inheritance and templates? None of them is actually necessary to write a program in
Chomik. In fact none of them exists in Chomik, and for good reasons. In spite of that Chomik
provides a powerful way of programming, with the implicit loops, implicit conditional instructions
and polimorphism. It also provides some constructs that, according to the author’s knowledge,
do not exist in any other programming language, most notably the recursive enumerations.

1.1.1 Identifiers

First we need to get used to the fact that a Chomik ”identifier” is only a part of a variable’s
name. You can write in the traditional style:

v a r i a b l e a : i n t e g e r ;
l e t a=value i n t e g e r 123 ;

Any time you need to use the value of the variable you need to apply the <> operator:

v a r i a b l e a : i n t ege r , b : i n t e g e r ;
l e t a=value i n t e g e r 123 ;
l e t b=<a>;

Why the strange syntax? It is a consequence of the chomik’s choice to allow multiple identi-
fiers as a variable name. And not only identifiers.

3

4 CHAPTER 1. CHOMIK - A MINIMALISTIC PROGRAMMING LANGUAGE

v a r i a b l e my age : i n t ege r , another age : i n t e g e r ;
l e t my age=value i n t e g e r 49 ;
l e t another age=<my age>;

1.1.2 Variable representations

What about the way how we represent the code and data in memory? In the ancient times
some language designers determined that the code must be constant and controllable by the
parameters only, while the data must be stored in variables. But we do not need to follow
the design patterns of the old languages. We can afford something much more revolutionary.
First we can store the code in many different ways. We do not necessarily need to follow the
pattern of code controlled by the parameters of a function/procedure and the variables (for
example integer variables) stored as separate values. Instead we can introduce a built-in type
”integer” and sometimes store it in a variable, sometimes (as an ”assignment event”) for a family
of variables or maybe even in some other ways. If we maintain a list of such assignment events
than we can easily search it backwards to find the most recent assignment. It is really not part
of the language to decide how the interpreter or the compiler is supposed to represent the code
and data. Let me show you an example:

type width =1. .5 , he ight = 1 . . 4 ;

v a r i a b l e a lpha (X: width) (Y: he ight) : i n t e g e r ;

expand (1) ;

l e t v a r i a b l e a lpha (X: width) (Y: he ight) = value i n t e g e r 10 ;
l e t v a r i a b l e a lpha 2 (Y: he ight) = value i n t e g e r 5 ;
l e t v a r i a b l e a lpha 2 3 = value i n t e g e r 1 ;

The above three assignments the Chomik interpreter (or compiler) might store in memory
in any way, we do not determine it beforehands. The point is that when we access alpha 2 3
we expect (after the three above assignments) it to have the value 1. In the above example we
might simply have 20 separate variables. We call them a family of variables. But consider this
example:

type he ight = 1 . . 4 ;

v a r i a b l e a lpha (X: i n t e g e r) (Y: he ight) : i n t e g e r ;
expand (1) ;

l e t v a r i a b l e a lpha (X: i n t e g e r) (Y: he ight) = value i n t e g e r 10 ;
l e t v a r i a b l e a lpha 2 (Y: he ight) = value i n t e g e r 5 ;
l e t v a r i a b l e a lpha 2 3 = value i n t e g e r 1 ;

1.1. INTRODUCTION 5

The difference is that the former width is the whole integer type now. Do we need to store
it for all possible integers? Of course not. It is enough to store an assignment event in a list of
assignment events. But the second and the third assignment can be stored traditionally - as a
variable’s value. The language only requires that if we access later for example alpha 100 1 then
the interpreter should find the value 10 there.

1.1.3 Code representation

In most, if not all, imperative programming languages we got used to the stack and passing
parameters to functions or procedures. The code as such is constant, and it is not even a type.
This implies the assumption that no operations on code are allowed. While in Chomik indeed
there are no operations on code (yet) there could be some in the future! In fact you might consider
”execute” to be such an operation, but by ”no operations on code” we mean no operations in
the meaning of a group theory. For example there is no concatenation of two codes to produce
a third one.

i n t do something (i n t a , i n t b , i n t c)
{

// some code depending on a , b and c
p r i n t f (” a+b+c=%i \n” , a+b+c) ;
r e turn a+b+c ;

}

Consider the above function written in C. Think about it in this way - a function definition is
a kind of pattern how to ”create” a huge amount of ”real” functions, if we replace the parameters
with their actual values. It is made so by design, no matter how many parameters are passed to
the function and no matter how large their sets of possible values are. In a way a function that
has parameters is a family of various functions. We could imagine replacing the above function
by a family of codes without parameters, so that the actual parameters’ values become a part of
the name.

6 CHAPTER 1. CHOMIK - A MINIMALISTIC PROGRAMMING LANGUAGE

i n t do someth ing 0 0 0 ()
{

p r i n t f (” a+b+c=0\n ”) ;
r e turn 0 ;

}
i n t do someth ing 0 0 1 ()
{

p r i n t f (” a+b+c=1\n ”) ;
r e turn 1 ;

}
i n t do someth ing 0 1 1 ()
{

p r i n t f (” a+b+c=2\n ”) ;
r e turn 2 ;

}
. . .

Instead of calling do something(1, 2, 3) we call in Chomik do something 1 2 3. Not a big
change. You might think this just a syntactic sugar. But it is more than that. It gets rid
of the unnecessary burden of the parameters. This is precisely how you treat the parameters
in Chomik. They are just the items of a variable’s name. We do not assume that code must
be represented using the parameters and some constant ”code literal” as we might call it. We
require the Chomik interpreter (or compiler) to choose the optimal way to represent the code. It
might be a value of type code stored in a separate variable, or it might be an assignment event,
especially if the amount of the variables in the family is very large. The above example would
look in Chomik as follows:

l e t v a r i a b l e do something (X: i n t e g e r) (Y: i n t e g e r) (Z : i n t e g e r)
= value code { execute <pr in t ”a+b+c=x”>; } ;

This is an example of a very large variable family, but of course the Chomik interpreter will
store it as a single assignment event in the assignment event list, which we search then backwards
when we want to find a specific code variable.

l e t v a r i a b l e do something (X: i n t e g e r) (Y: i n t e g e r) (Z : i n t e g e r)
= value code { execute <pr in t ”a+b+c=”>; } ;
l e t v a r i a b l e do something (X: i n t e g e r) 0 0
= value code { execute <pr in t ” Hel lo , y=0 and y=0!”>; } ;
l e t v a r i a b l e do someth ing 0 0 0
= value code { execute <pr in t ”The parameters are a l l 0!”> ; } ;

If we have assignments like above and later call for example do something 0 0 0 then we
should see the message ”The parameters are all 0!”. But the inner representation of the variables
in this family will be probably mixed, the first two assignments will be stored in an assignment
event list, while the third one will be represented traditionally - as a separate variable. We leave

1.1. INTRODUCTION 7

it at the discretion of an interpreter or a compiler. It is simply NOT a part of the Chomik
specification.

1.1.4 Class attributes

Now think about the attributes of a class. They are all similar in so far, that for every class
instance there is a copy of this particular attribute. They are a family of variables.

type person={Gotrek , Gwaigi l ion , Gerrudir } ;
expand (1) ;

l e t v a r i a b l e a g e o f (X: person) = value i n t e g e r 100 ;
l e t v a r i a b l e age o f Gotrek = value i n t e g e r 150 ;

l e t v a r i a b l e s t r e n g t h o f (X: person) = value i n t e g e r 10 ;

l e t v a r i a b l e wisdom of (X: person) = value i n t e g e r 5 ;
l e t v a r i a b l e wisdom of Gerrudir = value i n t e g e r 13 ;

The above Chomik code will create the following variables’ representation:

Gotrek has age 150 , s t r ength 10 , wisdom 5
Gwaig i l i on has age 100 , s t r ength 10 , wisdom 5
Gerrudir has age 100 , s t r ength 10 , wisdom 13

And you are free to create other ”class attributes” this way.

1.1.5 Class methods

What about the class methods? They are simply the families of variables of the built-in type
code. The literals of this type are embraced in the curly brackets. Note that when we have a
literal (a syntactic construct beginning with ”value” we explicitly follow the keyword ”value”
with the type name).

type person={Gotrek , Gwaigi l ion , Gerrudir } ;
expand (1) ;

l e t v a r i a b l e s a y h e l l o (X: person) =
value code { execute <pr in t ” He l lo ”> ;} ;

l e t v a r i a b l e s a y h e l l o G o t r e k =
value code { execute <pr in t ”Hi ”> ;} ;

Now if you call the method say hello Gwaigilion it will print out ”Hello”, but say hello Gotrek
will print out ”Hi”. In Chomik we have polimorphism (we will demonstrate later how it can be
applied).

8 CHAPTER 1. CHOMIK - A MINIMALISTIC PROGRAMMING LANGUAGE

1.1.6 Tuples attributes

In C++ there is no such thing as the tuples attributes. One needs to create a special class for
the tuples or push the information say about the relations between two persons into the person
class, which is a little contrary to the OOP paradigm. In Chomik it is easy:

type person={Gotrek , Gwaigi l ion , Gerrudir } ;
expand (1) ;
v a r i a b l e (X: person) l i k e s (Y: person) : boolean ;

l e t v a r i a b l e (X: person) l i k e s (Y: person) = value boolean f a l s e ;
l e t v a r i a b l e G o t r e k l i k e s G w a i g i l i o n = value boolean true ;
l e t v a r i a b l e G w a i g i l i o n l i k e s G o t r e k = value boolean true ;

The above code stores the information that Gotrek likes Gwaigilion and Gwaigilion likes
Gotrek, but for all the other combinations the X likes Y has the value false. The ”boolean” is
a built-in type, just like ”integer” and ”code”.

1.1.7 Arrays

Now think about the arrays - we intuitively feel they somehow match the concept of an iteration.
An array is also a family of variables, which can be accessed using their indeces. If you knew just
the type of the index, i.e. its range, then you can almost mechanically write an iteration over the
indices within this array. The multidimensional arrays are also families of variables, but they are
indexed by tuples. If you knew just their types (ranges) then you could write nested iterations
proceeding the array. Or, even better, we could create a programming language, which does the
job for you. That is what Chomik is. We do not want to impose the condition on the interpreter
whether there should be a sequential loop iterating over the items of an array. We do not care.
In next versions we might even allow the code to be executed paralelly, in many threads. (At
present we execute it sequentially).

1.1.8 Hello world

execute <pr in t ” He l lo world ”>;

The above code, as you might expect, prints out the string ”Hello world” to the standard
output. Why the strange syntax? What it means? In Chomik code is just a built-in type, with
literals that happen to be sequences of statements of the language itself. You can execute it in
two ways - either execute a code value directly or execute a variable of the type code. In the
above example we use the latter method. This is what the triangular brackets mean in Chomik -
whenever you see <something> it means ”a value of the variable named - something”. But wait
a minute - is ’print ”Hello world”’ a variable? Well - in Chomik it is a predefined variable, or to
be precise, all variables with the names beginning with the identifier print are a single predefined
family of variables. You could as well write:

1.1. INTRODUCTION 9

execute <pr in t ” He l lo ” 1 2 3>;

... and Chomik would print ”Hello ” 1 2 3. In this case the name of a variable is ’print
”Hello” 1 2 3’. It is just a name, it has nothing to do with passing the parameters to a code.

You can combine the <> operator, making it nested, for example:

execute <pr in t ” Hel lo , Gotrek ’ s s t r ength i s ” <s t r ength o f Got rek >>;

The nesting can be as complex as you wish.

1.1.9 Names, placeholders and implicit loops

As you have noticed the names in Chomik are slightly different than the identifiers in common
programming languages. You can think of the names as a sequence of name items, which can
be identifiers, literals (integer, float, string or even code literals) or the placeholders, i.e. special
identifiers provided with their type information. A placeholder can be recognized so that it uses
a special syntax:

execute <pr in t ” He l lo ” (X: boolean) (Y: boolean)>;

In the above example we have two placeholders (X and Y) of type boolean. (Boolean is a
built-in type).
In the above example we do not simply print ”Hello ” and {false, true} twice as you might have
expected. Instead we build a cartesian product of the set {false, true}, i.e. {false, true} ×
{false, true}. Then we calculate how many items are there in the cartesian product. Here we
can easily calculate that it contains four items:

(f a l s e , f a l s e)
(f a l s e , t rue)
(true , f a l s e)
(true , t rue)

In this case (when the amount of items in the cartesian product is finite and small) we will
print out:

He l lo f a l s e f a l s e
He l lo f a l s e t rue
He l lo t rue f a l s e
He l lo t rue t rue

10 CHAPTER 1. CHOMIK - A MINIMALISTIC PROGRAMMING LANGUAGE

We have just encountered the implicit loops for the first time - this is the preferred way to
perform iterations in Chomik.

1.1.10 Conditional instruction

As you might have guessed there is no conditional instruction in Chomik. Instead we use the
polimorphism that is granted by its powerful concept of a variables’ family for the variables of
the type ”code”. There is a built-in type compare result with the possible values lower, equal
and greater. There is also a built-in family of variables:

variable compare ”integer” (X : integer)(Y : integer) : code

This operation sets the built-in variable the compare result of the type compare result. In
order to use the machinery you need to call compare”integer”....

v a r i a b l e alpha : i n t e g e r ;

l e t v a r i a b l e alpha = value i n t e g e r 5 ;

v a r i a b l e modi fy a lpha on compar i son (X: compare re su l t) : code ;

l e t v a r i a b l e modi fy a lpha on compar i son (X: compare re su l t)
= value code {} ;

l e t v a r i a b l e modi fy a lpha on compar i son lower
= value code { l e t v a r i a b l e alpha = value i n t e g e r 100 ; } ;

execute <compare ” i n t e g e r ” <alpha> 10>;
execute <modi fy a lpha on compar i son <the compare r e s u l t >>;

execute <pr in t ” alpha=” <alpha>>;

The above code compares the value of the alpha with 10, and if it is lower then assigns alpha
with the integer value 100.

1.1.11 include

This is a piece of code from an actual Chomik project that uses an ”include” construct. It is not
a command as such - it is a part of the Chomik’s scanner.

1.1. INTRODUCTION 11

inc lude ” . . / chomik/ u s e r d e f i n e d t y p e s . chomik”
inc lude ” . . / chomik/ g l o b a l v a r i a b l e s . chomik”
inc lude ” . . / chomik/ g l ob a l s t r e a m s . chomik”
inc lude ” . . / chomik/ persons . chomik”
inc lude ” . . / chomik/ p l a c e s . chomik”
inc lude ” . . / chomik/ d e c i s i o n s . chomik”
inc lude ” ./ create new images . sd l chomik ”
inc lude ” ./ c r e a t e n e w f o n t s . sd l chomik ”
inc lude ” ./ on game mode . sd l chomik ”
inc lude ” ./ g o t r e k o p t i o n s . sd l chomik ”

l e t v a r i a b l e game mode = value game mode type t i t l e ;

l e t v a r i a b l e s d l loop body = value code
{

execute <on game mode <game mode>>;
} ;

execute <s d l loop >;

The above code is written in sdl chomik, which is a dialect of chomik extended for usage
of the libraries SDL2 and SDL2 image. Note that we mix here various files, either written in
chomik or in sdl chomik. This is legal.

1.1.12 Simplified syntax

In order to simplify the Chomik syntax we have decided to remove the requirement for a ”vari-
able” keyword after ”let”, and to remove the requirement for the ”execute” keyword. You can
still use them (they are optional), but you could write:

l e t game mode = value game mode type t i t l e ;

l e t s d l loop body = value code
{

<on game mode <game mode>>;
} ;

<s d l loop >;

The modification affects both chomik and sdl chomik as well as any future extensions that
might be created.

12 CHAPTER 1. CHOMIK - A MINIMALISTIC PROGRAMMING LANGUAGE

1.2 Recursive enumerations

Until now we were showing examples how to achieve in Chomik the effect you can achieve in other
languages (like C/C++ or Java). Now let us introduce a feature that does not exist elsewhere
(according to our knowledge): the recursive enumerations. You could have noticed the command
expand(1); in our examples. The time has come to reveal its meaning. It is necessary to call
it if you want to apply the user-defined types. The integer parameter (which cannot be a <>
operator) determines how deeply the recursion of the types should go.

type p lace={Krakow , Warszawa , Wroclaw , Poznan , Gdansk} ,
person={Conan , Gotrek , Gwaig i l i on } ,

a c t i on={doing nothing ,
g o i n g t o (X: p lace) ,
t e l l i n g (Y: person) (X: in fo rmat ion) ,
a sk ing (X: person) t o d o (Y: ac t i on) ,
a sk ing (X: person) whether (Y: in fo rmat ion) ,
a t t a c k i n g (X: person)} ,

i n fo rmat ion ={(X: person) i s i n (Y: p lace) ,
(X: person) i s (Y: ac t i on) ,
(X: person) t h i n k s (Y: in fo rmat ion) ,
(X: person) h a s t o l d (Y: person) (Z : in fo rmat ion) ,
(X: person) h a s a t t a c k e d (Y: person) } ;

expand (1) ;

execute <pr in t (X: in fo rmat ion)>;

The above program will not print anything. If you replace expand(1); with expand(2); it will
print out:

1.2. RECURSIVE ENUMERATIONS 13

Conan is in Krakow
Gotrek i s in Krakow
Gwaig i l i on i s in Krakow
Conan is in Warszawa
Gotrek is in Warszawa
Gwaig i l i on i s in Warszawa
Conan is in Wroclaw
Gotrek i s in Wroc law
Gwaig i l i on i s in Wroc law
Conan is in Poznan
Gotrek i s in Poznan
Gwa ig i l i on i s i n Poznan
Conan is in Gdansk
Gotrek i s in Gdansk
Gwa ig i l i on i s i n Gdansk
Conan i s do ing noth ing
Got r ek i s do ing no th ing
G w a i g i l i o n i s d o i n g n o t h i n g
Conan has attacked Conan
Gotrek has attacked Conan
Gwaig i l i on has attacked Conan
Conan has attacked Gotrek
Gotrek has attacked Gotrek
Gwaig i l i on has at tacked Gotrek
Conan has attacked Gwaig i l i on
Gotrek has at tacked Gwaig i l i on
Gwa ig i l i on ha s a t ta cked Gwa ig i l i on

If you replace expand(1); with expand(3); then you will get 384 values, including:

Got r ek has to ld Gwa ig i l i on Conan i s in Poznan

If you replace expand(1); with expand(4); then you will get 5253 values, including:

Gwa ig i l i on has to ld Conan Gotrek has to ld Conan Gwaig i l i on i s in Gdansk

Note that in the below code we have recursive dependencies - for example some actions depend
on other actions or other informations, and some informations depend on other actions or other
informations. Using this concept in Chomik we can address the problem of handling situations
like ”I know that you know that he knows that ...”.

14 CHAPTER 1. CHOMIK - A MINIMALISTIC PROGRAMMING LANGUAGE

type p lace={Krakow , Warszawa , Wroclaw , Poznan , Gdansk} ,
person={Conan , Gotrek , Gwaig i l i on } ,

a c t i on={doing nothing ,
g o i n g t o (X: p lace) ,
t e l l i n g (Y: person) (X: in fo rmat ion) ,
a sk ing (X: person) t o d o (Y: ac t i on) ,
a sk ing (X: person) whether (Y: in fo rmat ion) ,
a t t a c k i n g (X: person)} ,

i n fo rmat ion ={(X: person) i s i n (Y: p lace) ,
(X: person) i s (Y: ac t i on) ,
(X: person) t h i n k s (Y: in fo rmat ion) ,
(X: person) h a s t o l d (Y: person) (Z : in fo rmat ion) ,
(X: person) h a s a t t a c k e d (Y: person) } ;

expand (3) ;

Combining the power of the Chomik’s variables’ families with the recursive enumerations we
can easily create unusually strong code - the code that is difficult to achieve in other, even much
more complex languages.

1.3 Value of a placeholder

When you ask Chomik to execute a family of code variables you often need to assign a placeholder
value to a variable. Think about it as if it were a local variable (but they are NOT, in Chomik
all variables are global). This is achieved with the following construct:

1.4. BUILT-IN CONSTRUCTS 15

type p lace={Krakow , Warszawa , Wroclaw , Poznan , Gdansk } ;
expand (1) ;

v a r i a b l e cur rent p lace : p lace ;

v a r i a b l e do something about the p lace (X: p lace) : code ;
l e t v a r i a b l e do something about the p lace (X: p lace)=value code
{

l e t v a r i a b l e cur rent p lace = value p lace [(X: p lace)] ;
we a s s i g n the cur rent p lace v a r i a b l e with the value o f X here

execute <pr in t <cur rent place >>;

we could do other ope ra t i on s us ing the cur rent p lace here
} ;
execute <do something about the p lace (X: p lace)>;

This will print out all the places. If you need to do just that (to print them out), it is more
simple to write:

type p lace={Krakow , Warszawa , Wroclaw , Poznan , Gdansk } ;
expand (1) ;

execute <pr in t (X: p lace)>;

1.4 Built-in constructs

1.4.1 Print

There is a family of variables beginning with the word ”print”. It prints out the values following
the identifier ”print” to the current output stream. By default it prints to the standard output.
Note that we are free to use the placeholders, even many of them, so that our print command is
executed for each possible tuple of their values. Example:

16 CHAPTER 1. CHOMIK - A MINIMALISTIC PROGRAMMING LANGUAGE

v a r i a b l e (X: boolean) and (Y: boolean) : boolean ;
l e t v a r i a b l e (X: boolean) and (Y: boolean)=value boolean f a l s e ;
l e t v a r i a b l e t rue and true=value boolean true ;

execute <pr in t (X: boolean) ”and” (Y: boolean)
”=” <(X: boolean) and (Y: boolean)>>;

In the above example we first declare and define a family of variables of type boolean, which
include variables ”false and false”, ”false and true”, ”true and false” - all of them equal ”false”,
and the variable ”true and true” which has the value ”true”. Then we use the magic of the
Chomik’s implicit iteration to print out the following text:

f a l s e and f a l s e = f a l s e
t rue and f a l s e = f a l s e
f a l s e and true = f a l s e
t rue and true = true

BTW. We could as well use different placeholders to define the family of variables and to
print it out.

v a r i a b l e (X: boolean) and (Y: boolean) : boolean ;
l e t v a r i a b l e (X: boolean) and (Y: boolean)=value boolean f a l s e ;
l e t v a r i a b l e t rue and true=value boolean true ;

execute <pr in t (A: boolean) ”and” (B: boolean)
”=” <(A: boolean) and (B: boolean)>>;

Variables controlling print

There are some predefined variables controlling the print’s behaviour. We do not have many
versions (printf, fprintf, sprintf...). We do printing with a single print instruction, and we can
control it setting the predefined integer variable ”the print target stream index”:

now we r e d i r e c t p r i n t to the standard e r r o r stream
l e t v a r i a b l e the p r i n t t a r g e t stream index=value i n t e g e r 1 ;

execute <pr in t (X: boolean) ”and” (Y: boolean) ”=”
<(X: boolean) and (Y: boolean)>>;

Another predefined variable used to control the print family of variables is the string variable
”the print separator”.

1.4. BUILT-IN CONSTRUCTS 17

now we change the p r i n t s epara to r
l e t v a r i a b l e the p r i n t s epara to r=value s t r i n g ”” ;

execute <pr in t (X: boolean) ”and” (Y: boolean) ”=”
<(X: boolean) and (Y: boolean)>>;

This will print out the text with the empty separator between the items of the name:

f a l s e a n d f a l s e=f a l s e
t r u e a n d f a l s e=f a l s e
f a l s e a n d t r u e=f a l s e
trueandtrue=true

By default every print ends with an end of line string. It is controlled by the string variable
”the print end of line”:

now we change the p r i n t end o f l i n e :
l e t v a r i a b l e the p r i n t end o f l i n e=value s t r i n g ”” ;

execute <pr in t (X: boolean) ”and” (Y: boolean) ”=”
<(X: boolean) and (Y: boolean)>>;

l e t v a r i a b l e the p r i n t end o f l i n e=value s t r i n g ”\n ” ;

execute <pr in t (X: boolean) ”and” (Y: boolean) ”=”
<(X: boolean) and (Y: boolean)>>;

As shown above we can use the ”backslash n” construct to restore the original value.

Print memory report

The variable ”print memory report” prints out the machine report (the types defined) and the
memory report (the variables defined and their values). It is useful for the debugging purposes.

1.4.2 Input/output

Just like in C there are three predefined streams in Chomik:

1. standard output - stream index 0

2. standard error - stream index 1

3. standard input - stream index 2

18 CHAPTER 1. CHOMIK - A MINIMALISTIC PROGRAMMING LANGUAGE

If we want to write to a file we first create a stream. We do it with the predefined family
of variables of type code prefixed ”create”. It is somewhat similar to the concept behind the
”print” family of variables.

execute <c r e a t e new output f i l e s t r e a m ” t . txt ”>;
l e t v a r i a b l e the p r i n t t a r g e t stream index

= <the c rea ted stream index >;
execute <pr in t ” h e l l o 2 ”>; # now we pr i n t to the f i l e t . txt

The family of variables ”create new output filestream ’string’” updates the value of a prede-
fined integer variable ”the created stream index”. We can store it somewhere, or we can use it
directly to assign ”the print target stream index”.

Random enums

If we have some enum type defined we can use a similar construct (creating a stream) to create
a random generator that provides the places. Note that the type name must be provided as a
string.

type p lace={Krakow , Warszawa , Wroclaw } ;
expand (1) ;

execute <c r e a t e new input random enum stream ” p lace ”>;
l e t v a r i a b l e my p lace generato r index = <the c rea ted stream index >;

. . .
t h i s i s how we read from a random enum stream :
l e t v a r i a b l e the read from stream source stream index =

<my place generato r index >;
execute <read from stream ” p lace ”>;
execute <pr in t <the read from stream r e s u l t ” p lace ”>>;

This works even for the predefined enums (like boolean). The variable ”my place generator
index” could have any other name, we just use it to remember the created stream index. After
we execute ’read from stream ”place”’ the value of the automatically created variable ’the read
from stream result ”place”’ will be assigned for us. We can use it afterwards. It is just a simple
variable.

Random integers

There is a similar construct for created the integer random generators:

execute <c r e a t e new input random number stream ” i n t e g e r ” 1 10>;
l e t v a r i a b l e my st r ength genera tor index =

<the c rea ted stream index >;

1.4. BUILT-IN CONSTRUCTS 19

In the above example we create a random number generator for the built-in type integer
(again we need to provide the type name in quotation marks) beginning from the number 1 and
ending with 10 - inclusively.

t h i s i s how we use i t :
l e t v a r i a b l e the read from stream source stream index =

<my st r ength genera tor index >;
execute <read from stream ” i n t e g e r ”>;
execute <pr in t <the read from stream r e s u l t ” i n t e g e r ”>>;

The variable ”my strength generator index” could have any other name.

1.4.3 Arithmetic operations

Chomik supports integer addition and substraction (at present). Each of the operations consists
of executing a code variable from a built-in family of variables (add or substract). The ”add”
operation sets an integer predefined variable ′the add result ”integer”′, and the ”substract”
operation sets an integer predefined variable ′the substract result ”integer”′.

execute <add ” i n t e g e r ” <cur rent opt ion number> 1>;
l e t v a r i a b l e cur rent opt ion number =

<the add r e s u l t ” i n t e g e r ”>;

The above two operations mean we increase the variable ”current option number” by 1.

execute <s ub s t r a c t ” i n t e g e r ” <cur rent opt ion number> 1>;
l e t v a r i a b l e cur rent opt ion number =

<the s ub s t r a c t r e s u l t ” i n t e g e r ”>;

The above two operations mean we decrease the variable ”current option number” by 1.

1.4.4 Comparing

There is a predefined type ”compare result” with the possible values being ’lower’, ’equal’ and
’greater’. There is also a predefined variable ”the compare result” of this type.

Comparing enums

Let us take a look at a code taken from an actual project:

20 CHAPTER 1. CHOMIK - A MINIMALISTIC PROGRAMMING LANGUAGE

type person={Gotrek , Gwaigi l ion , Gerrudir } ,
p l ace={Krakow , Warszawa , Wroclaw} ,
a c t i on={no act ion , goto (X: p lace) } ;
expand (2) ;

l e t v a r i a b l e d e c i s i o n o f (X: person)=value ac t i on no ac t i on ;

v a r i a b l e cur rent person goto cur rent p lace (X: compare re su l t) : code ;
l e t v a r i a b l e cur rent person goto cur rent p lace lower=value code {} ;
l e t v a r i a b l e cur rent person goto cur rent p lace g r e a t e r=value code {} ;
l e t v a r i a b l e cur rent person goto cur rent p lace equal=value code
{
l e t v a r i a b l e l o c a t i o n o f <cur rent person>=<cur rent place >;
execute <pr in t <cur rent person> ”has moved to ”

< l o c a t i o n o f <cur rent person>>>;
l e t v a r i a b l e d e c i s i o n o f <cur rent person>=value ac t i on no ac t i on ;
} ;

v a r i a b l e perform current person d e c i s i o n goto (A: p lace) : code ;
l e t v a r i a b l e perform current person d e c i s i o n goto (A: p lace)=value code
{
l e t v a r i a b l e cur rent d e c i s i o n = <d e c i s i o n o f <cur rent person>>;
l e t v a r i a b l e cur rent p lace = value p lace [(A: p lace)] ;
l e t v a r i a b l e cur rent pattern = value ac t i on goto <cur rent place >;

execute <compare ” ac t i on ” <cur rent dec i s i on> <cur rent pattern >>;
execute <cur rent person goto cur rent p lace <the compare r e s u l t >>;
} ;

v a r i a b l e perform d e c i s i o n f o r (X: person) : code ;
l e t v a r i a b l e perform d e c i s i o n f o r (X: person)=value code
{
l e t v a r i a b l e cur rent person = value person [(X: person)] ;
execute <pr in t ” perform d e c i s i o n f o r ” <cur rent person>>;
execute <perform current person d e c i s i o n goto (A: p lace)>;
} ;

v a r i a b l e perform a l l the d e c i s i o n s : code ;
l e t v a r i a b l e perform a l l the d e c i s i o n s=value code
{
execute <pr in t ” per forming a l l the d e c i s i o n s ”>;
execute <perform d e c i s i o n f o r (X: person)>;
} ;

here we a s s i g n the value o f ’ d e c i s i o n o f Gotrek ’ to :
goto Krakow

l e t v a r i a b l e d e c i s i o n o f Gotrek=value ac t i on goto Krakow ;

. . .
somewhere e l s e in the code we execute a l l d e c i s i o n s o f a l l persons :
execute <perform a l l the d e c i s i o n s >;

1.4. BUILT-IN CONSTRUCTS 21

This will print out:

per forming a l l the d e c i s i o n s
perform d e c i s i o n f o r Gotrek
Gotrek has moved to Krakow
perform d e c i s i o n f o r Gwaig i l i on
perform d e c i s i o n f o r Gerrudir

Comparing integers

The below code comes from an actual project written in Chomik. It is defining two families of
variables of type code. For each compare result we have three options (lower, equal, greater)
therefore we have six assignments:

v a r i a b l e move cur rent opt ion number down i f (X: compare re su l t) : code ;
l e t v a r i a b l e move cur rent opt ion number down i f equal=value code
{

l e t v a r i a b l e cur rent opt ion number = value i n t e g e r 1 ;
} ;
l e t v a r i a b l e move cur rent opt ion number down i f lower=value code
{

execute <add ” i n t e g e r ” <cur rent opt ion number> 1>;
l e t v a r i a b l e cur rent opt ion number =

<the add r e s u l t ” i n t e g e r ”>;
} ;
l e t v a r i a b l e move cur rent opt ion number down i f g r e a t e r=

<move cur rent opt ion number down i f equal >;

v a r i a b l e move cur rent opt ion number up i f (X: compare re su l t) : code ;
l e t v a r i a b l e move cur rent opt ion number up i f equal = value code
{

l e t v a r i a b l e cur rent opt ion number = value i n t e g e r 5 ;
} ;
l e t v a r i a b l e move cur rent opt ion number up i f lower =

<move cur rent opt ion number up i f equal >;
l e t v a r i a b l e move cur rent opt ion number up i f g r e a t e r=value code
{

execute <s ub s t r a c t ” i n t e g e r ” <cur rent opt ion number> 1>;
l e t v a r i a b l e cur rent opt ion number =

<the s ub s t r a c t r e s u l t ” i n t e g e r ”>;
} ;

When we increase the ”current option” we use the above code as follows:

22 CHAPTER 1. CHOMIK - A MINIMALISTIC PROGRAMMING LANGUAGE

execute <compare ” i n t e g e r ” <cur rent opt ion number> 5>;
execute <move cur rent opt ion number down i f <the compare r e s u l t >>;

When we decrease the ”current option” we use it as follows:

execute <compare ” i n t e g e r ” <cur rent opt ion number> 1>;
execute <move cur rent opt ion number up i f <the compare r e s u l t >>;

1.4.5 The program return value

In order to write tests it is useful to control the value that is going to be returned by the program.
There is a variable called ”the program return” of type integer, by default equal 0, which can be
assigned for that purpose.

l e t the program return = value i n t e g e r 1 ;
t h i s program i s going to re turn 1

You can assign it conditionally (using the comparison), so that a test can fail if say, the
addition does not work properly.

1.4. BUILT-IN CONSTRUCTS 23

#!/ usr / l o c a l / bin /chomik

t h i s t e s t checks the add i t i on o f i n t e g e r s

v a r i a b l e re turn 1 on wrong r e s u l t (X: compare r e su l t type) : code ;
l e t re turn 1 on wrong r e s u l t equal=value code
{

l e t the program return = value i n t e g e r 0 ;
} ;
l e t r e turn 1 on wrong r e s u l t lower=value code
{

l e t the program return = value i n t e g e r 1 ;
} ;
l e t r e turn 1 on wrong r e s u l t g r e a t e r=value code
{

l e t the program return = value i n t e g e r 1 ;
} ;

<add ” i n t e g e r ” 2 2>;

<compare ” i n t e g e r ” <the add r e s u l t ” i n t e g e r”> 4>;
<re turn 1 on wrong r e s u l t <the compare r e s u l t >>;

1.4.6 The break flag

When running an infinite loop you will want eventually to stop it. This can be achieved by
assigning the built-in boolean variable ”the break flag” to false. The below code iterates from 0
to 10:

24 CHAPTER 1. CHOMIK - A MINIMALISTIC PROGRAMMING LANGUAGE

#!/ usr / l o c a l / bin /chomik

t h i s t e s t checks the ” i n f i n i t e ” loop
i t s e t s the break f l a g a f t e r the comparison o f the counter
i n d i c a t e s i t i s equal 10

v a r i a b l e break on (X: compare r e su l t type) : code ;
l e t break on equal=value code
{

l e t the break f l a g = value boolean true ;
} ;
l e t break on lower=value code {} ;
l e t break on g r e a t e r=value code
{

l e t the break f l a g = value boolean true ;
t h i s ass ignment i s not nece s sa ry !
i t i s j u s t to be on the s a f e s i d e . . .

} ;

v a r i a b l e do something (X: i n t e g e r) : code ;
l e t do something (X: i n t e g e r)=value code
{

l e t counter = value i n t e g e r [(X: i n t e g e r)] ;

<pr in t ” the counter equa l s ” <counter >>;

<compare ” i n t e g e r ” <counter> 10>;
<break on <the compare r e s u l t >>;

} ;

<do something (X: i n t e g e r)>; # here we run the i t e r a t i o n

l e t the break f l a g=value boolean f a l s e ;
a f t e r we did the loop i t i s a good habi t to r e s e t the break f l a g
the break f l a g i s a p rede f in ed boolean v a r i a b l e
by d e f a u l t i t equa l s f a l s e

Note that the same global ”the break flag” works for all loops, it is not a local variable. Keep
this in mind when nesting infinite loops.

1.5 Summary

Chomik is a minimalistic language with the following types of instructions:

1. type declaration

1.5. SUMMARY 25

2. variable declaration

3. expand command

4. assignment command (let variable ...)

5. execute command

26 CHAPTER 1. CHOMIK - A MINIMALISTIC PROGRAMMING LANGUAGE

Chapter 2

Writing libraries in Chomik

When you write a library in Chomik you usually want to provide its source code under a GPL3
license.

2.1 Logical operators

Although Chomik does not support say logical operators, we can easily add them using its
powerful ”family of variables” paradigm. We have for example the built-in type ”boolean”.
Imagine we want the operation ”not”:

v a r i a b l e not (B: boolean) : boolean ;

l e t not f a l s e=value boolean true ;
l e t not t rue=value boolean f a l s e ;

With this definition in place we can use the ”not” operator when constructing the names of
variables. For example:

v a r i a b l e a : boolean ;

. . .

<pr in t ”a=” <a>>
<pr in t ” not a=” <not <a>>>;

Using the same concept you could create infix (or prefix, if you prefer) operators ”and”, ”or”,
”implies” and so on.

2.2 Successor

You may wish to have operations like ”successor” or ”predecessor” in place. Imagine you define
a new type ”place” and add a family of variables based on this type:

27

28 CHAPTER 2. WRITING LIBRARIES IN CHOMIK

type p lace={Krakow , Warszawa , Wroclaw , Poznan , Gdansk } ;
extend (1) ;

v a r i a b l e (X: p lace) s u c c e s s o r : p lace ;

l e t Krakow s u c c e s s o r=value p lace Warszawa ;
l e t Warszawa s u c c e s s o r=value p lace Wroclaw ;
l e t Wroclaw s u c c e s s o r=value p lace Poznan ;
l e t Poznan s u c c e s s o r=value p lace Gdansk ;
l e t Gdansk s u c c e s s o r=value p lace Krakow ;

You could then easily iterate using this family of variables.

v a r i a b l e x : p lace ;
. . .
<pr in t ”x=” <x>>;
<pr in t ”x s u c c e s s o r=” <<x> succe s so r >>;
<pr in t ”x s u c c e s s o r s u c c e s s o r=” <<<x> succe s so r> succe s so r >>;

Chapter 3

Extending chomik

It is possible to embed chomik in your own C++ projects creating new Chomik-like languages.
The chomik package itself contains an example of such language, which is sdl chomik. Feel free
to look at the code (inc/sdl chomik.h and src2/sdl chomik.cc).

In order to execute an sdl chomik program we need to do the following:

sd l chomik : : machine m;
m. c r e a t e p r e d e f i n e d t y p e s () ;
m. c r e a t e p r e d e f i n e d v a r i a b l e s () ;
m. c r e a t e p r e d e f i n e d s t r e a m s () ;

the program . execute (m) ;

chomik : : gener ic name gn ;
gn . add gener ic name item (

std : : make shared<chomik : : i d e n t i f i e r n a m e i t e m >(” the ”)) ;
gn . add gener ic name item (

std : : make shared<chomik : : i d e n t i f i e r n a m e i t e m >(”program ”)) ;
gn . add gener ic name item (

std : : make shared<chomik : : i d e n t i f i e r n a m e i t e m >(” re turn ”)) ;
chomik : : s i g n a t u r e s0 {gn } ;

r e t u r n v a l u e = m. g e t v a r i a b l e v a l u e i n t e g e r (s0) ;

The ”return value” should be then returned by the main function itself. Note that the ma-
chine we are using for an execution is NOT chomik::machine, but sdl chomik::machine instead. It
is, however, inherited from chomik::machine. The program must be first declared and initialized:

29

30 CHAPTER 3. EXTENDING CHOMIK

chomik : : program the program ;
chomik : : pa r s e r t h e p a r s e r { the program } ;

. . .

i f (t h e p a r s e r . parse (argv [1]) == 0)
{

execute the program
}

The sdl chomik::machine overrides three functions from its base class chomik::machine:

1. create predefined variables

2. get is user defined executable

3. execute user defined executable

Note that in the
sdl chomik::machine::create predefined variables we invoke the original
chomik::machine::create predefined variables so that sdl chomik has all the predefined
variables from chomik (since it is an extension).

void sdl chomik : : machine : : c r e a t e p r e d e f i n e d v a r i a b l e s ()
{

chomik : : machine : : c r e a t e p r e d e f i n e d v a r i a b l e s () ;
. . .

}

Chapter 4

sdl chomik

The sdl chomik is a small extension of chomik, i.e. it is a language based on chomik and adding
to it a (limited) functionality of the SDL2 and SDL2 image libraries. It is delivered with the
chomik itself. While in the former chapter we have written a little about how to create your own
extensions on its example - we are going to introduce sdl chomik from a user’s perspective now.

4.1 Built-in constructs

There are some built-in entities in sdl chomik made to support the 2D graphic programming.

4.1.1 sdl loop

The entry point (sdl loop) is a predefined variable.

execute <s d l loop >;

The above code is the simplest program written in sdl chomik. It invokes sdl loop. It simply
shows a black window with the hard-coded size of 800× 600.

4.1.2 sdl loop body

The ”sdl loop body” is a predefined variable of type code. Its value is originally an empty code.
You are supposed to assign it with the actual sdl chomik code so that the ”sdl loop” knows what
to do.

l e t v a r i a b l e s d l loop body = value code
{

execute <pr in t ” h e l l o ”>;
} ;

execute <s d l loop >;

31

32 CHAPTER 4. SDL CHOMIK

The above code opens a black window, and then continuously prints out ”hello” to the
standard output. The text appears on the terminal screen, not on the created SDL screen. How
to show an image on the SDL window instead?

4.1.3 Images

In order to show an image you first need to read it from a file. This is done by extended family
of variables with the prefix ”create”. But didn’t we use it already in chomik? That is correct.
The sdl chomik does not remove the old chomik functionality, but adds a new one. You can
still create random generator streams or any other streams as if you would in chomik, but in
addition you can create images. For example in order to create an image stored in the folder
”../image/title.png” we need to run:

execute <c r e a t e new image ” . . / image/ t i t l e . png”>;
v a r i a b l e t i t l e image index : i n t e g e r ;
l e t v a r i a b l e t i t l e image index = <the c rea ted image index >;

Just as for the streams, there is a predefined integer variable ”the created image index”,
which is sdl chomik specific. It is an integer variable assigned by the ”create new image ’...’”
family of variables. You usually need to store it in some specific variable of yours, for later use.
The complete working example in sdl chomik would be:

execute <c r e a t e new image ” . . / image/ t i t l e . png”>;
v a r i a b l e t i t l e image index : i n t e g e r ;
l e t v a r i a b l e t i t l e image index = <the c rea ted image index >;

l e t v a r i a b l e s d l loop body = value code
{

execute <show image < t i t l e image index> 0 0>;
} ;

execute <s d l loop >;

This code reads a PNG image from the file ”../image/title.png” and uses a predefined ”show
image” family of variables. After the ”show image” you should pass three values:

1. the index of the image to display

2. the x coordinate

3. the y coordinate

It is customary in chomik to read a hamster image (delivered with the chomik) and to put it
on the screen in the left upper corner, for example like that:

4.1. BUILT-IN CONSTRUCTS 33

execute <c r e a t e new image ” . . / image/ t i t l e . png”>;
v a r i a b l e t i t l e image index : i n t e g e r ;
l e t v a r i a b l e t i t l e image index = <the c rea ted image index >;

execute <c r e a t e new image ” . . / image/chomik . png”>;
v a r i a b l e chomik image index : i n t e g e r ;
l e t v a r i a b l e chomik image index = <the c rea ted image index >;

l e t v a r i a b l e s d l loop body = value code
{

execute <show image < t i t l e image index> 0 0>;
execute <show image <chomik image index> 0 0>;

} ;

execute <s d l loop >;

You are free to add the hamster image to your projects (it is public domain). The word
”chomik” means ”hamster” in Polish.

4.1.4 Fonts

In sdl chomik you can also load TTF fonts. You have to use a predefined family of variables
”create new font ...”. It should be followed by the TTF font file name and the font size. It
assignes the sdl chomik-specific predefined variable ”the created font index”. You can later use
it to show text.

34 CHAPTER 4. SDL CHOMIK

execute <c r e a t e new font ” . . / f ont / P lay fa i rD i sp lay −Bold . t t f ” 32>;
v a r i a b l e my l a r g e font index : i n t e g e r ;
l e t v a r i a b l e my l a r g e font index = <the c rea ted font index >;

execute <c r e a t e new image ” . . / image/ t i t l e . png”>;
v a r i a b l e t i t l e image index : i n t e g e r ;
l e t v a r i a b l e t i t l e image index = <the c rea ted image index >;

execute <c r e a t e new image ” . . / image/chomik . png”>;
v a r i a b l e chomik image index : i n t e g e r ;
l e t v a r i a b l e chomik image index = <the c rea ted image index >;

l e t v a r i a b l e s d l loop body = value code
{
execute <show image < t i t l e image index> 0 0>;
execute <show image <chomik image index> 0 0>;
execute <show text <my l a r g e font index> ” h e l l o world ” 100 100>;
} ;

execute <s d l loop >;

In order to show the text you can use a predefined sdl chomik-specific ”show text” family of
variables. You have to pass the font index (obtained from ”the created font index”), the text
itself and the coordinates. The Playfair fonts are delivered with chomik and licensed:

This Font Software i s l i c e n s e d
under the SIL Open Font License , Vers ion 1 . 1 .
This l i c e n s e i s a v a i l a b l e with a FAQ at :
http :// s c r i p t s . s i l . org /OFL

The Playfair font license is also included in the chomik package (file chomik/font/OFL.txt).

4.2 License

chomik and sdl chomik are licensed under GPL 3.0, with the exceptions of the images (public
domain) and the fonts.

